

Avocados

RALIAN MACADA

Custard Apples

Australia

AUSTRALIA INC.

A multi target approach to fruitspotting bug management - Update March 2014 -

Mid-term project reviewRecommendation

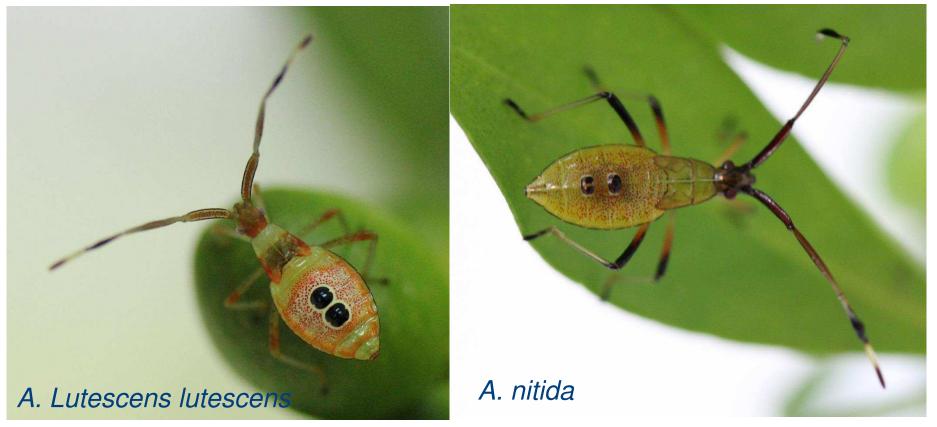
- Revise Project towards two central outcomes:
- 1. Developing effective insect thresholds
 - Pest and crop monitoring techniques need to be refined;
 - Pheromone and trap crops need to be developed and use strategies for traps defined;
- -2. Developing suitable chemical control options.
- Without any increase in funding:
 - Research for biocontrol agent be contracted or stopped
 - Trap crop research be narrowed and refocused to a small number of sites.

Research update March 2014

- Chemical control
 - Laboratory screening
 - Field trials
- Trap Crops
- Pheromone traps
- Biological control

Chemical control

- Linkage with other groups working on bugs
- Laboratory screening
 - New chemicals
 - Eggs
 - Nymphs
- Field trials
 - Centre for Tropical Horticulture Alstonville
 - Commercial farms



- Laboratory screening of eggs
 - FSB eggs (5 per rep) were put on post-it notes and dipped in different insecticides
 - Insecticides tested: abamectin, beta-cyfluthrin (Bulldock[™]), chlorantranilprole (Product 2), flonicamid (Product 3), flupyradifurone (Product 1), tolfenpyrad (Product 4), sulfoxaflor (Transform[™]), trichlorfon (Lepidex[™]), acephate (Lancer[™]), diazinon, chlorfenapyr (Product 5), tolfenpyrad (Product 4)+ chlorfenapyr (Product 5).
 - None of the tested insecticides had a significant impact on hatching of FSB.
 - Positive for egg parasitoids survival

Laboratory screening of nymphs

– Drop test (1 μ l of insecticide on each insect)

Treatment	Mortality % at day 3	Treatment	Mortality % at day 3
Abamectin-1.0ml/L	99.78	Lepidex-2.0ml/L	91.87
Bulldock-0.5ml/L	99.78	Pyganic-2.0ml/L	32.28
Control	9.78	Product 1-1.0ml/L	99.78
Diazinon-1.25ml/L	49.78	Sulfoxaflor -0.8ml/L	99.78
Endosulfan-1.5ml/L	99.78	Supracide-1.25ml/L	99.78
Product 2-1.0ml/L	99.78	Product 4 -1.0ml/L	56.94
Product 3-1.0mg/L	0.00	Product 4 -2.0ml/L	0.00
Product 3-2.0mg/L	26.87	Product 4 -4.0ml/L	25.00
Product 3-4.0mg/L	0.00	Product 4 -8.0ml/L	50.00
Product 3-8.0mg/L	25.00	Product 4 & Product 5 -1ml/L	79.78
Lancer-0.8ml/L	99.78	Water	60.20
Lannate-2.0ml/L	69.78		

Chemical control (cont.) Laboratory screening of nymphs Residue test (nymphs exposed to treated *Murraya* after 1 day)

Chemical	Rate ml/L	Mortality@ 7 days	%mortality
Abamectin	1.0ml/L	5	100
Bulldock	0.5ml/L	5	100
Product 1	1ml/L	3	60
Diazinon	1.25ml/L	5	100
Endosulfan	1.5ml/L	5	100
Product 2	1.0ml/L	1	20
Product 3	2.0gm	1	20
Lannate	2.0ml/L	4	80
Lancer	0.8ml/L	5	100
Lepidex	2ml/L	5	100
Pyganic	2.0ml/L	2	40
Sulfoxaflor	0.8ml/L	5	100
Supracide	1.25ml/L	5	100
Product 4	1.0ml/L	5	100
Product 4 & Product 5	1.0ml/L	5	100
Water		0	0

Field trials:

- CTH macadamias:

Before Christmas (all orchard):

Diazinon (20 Aug2013), Bulldock and Spin (16 Oct 2013), Lancer (02 Dec 2013)

After Christmas (individual tree treatments)

- Beta-cyfluthrin (Bulldock™),
- Product 2,
- Product 1,
- Sulfoxaflor
- Trichlorfon (Lepidex[™]),
- Acephate (Lancer[™])
- Abamectin
- First harvest: 1. week in March 2014

Field trials:

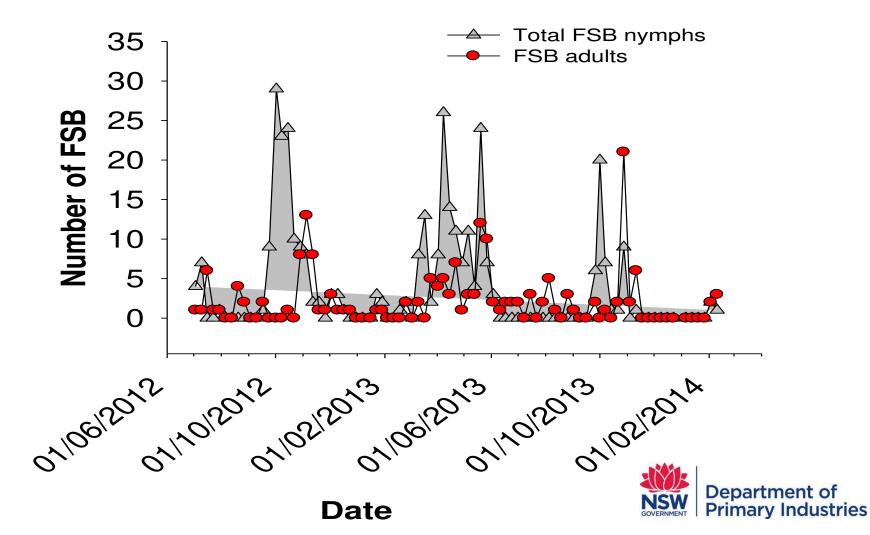
- Commercial macadamias:
 - Amamoor and Alstonville:
 - Lepidex[™] vs. Product 2

- Commercial avocados:

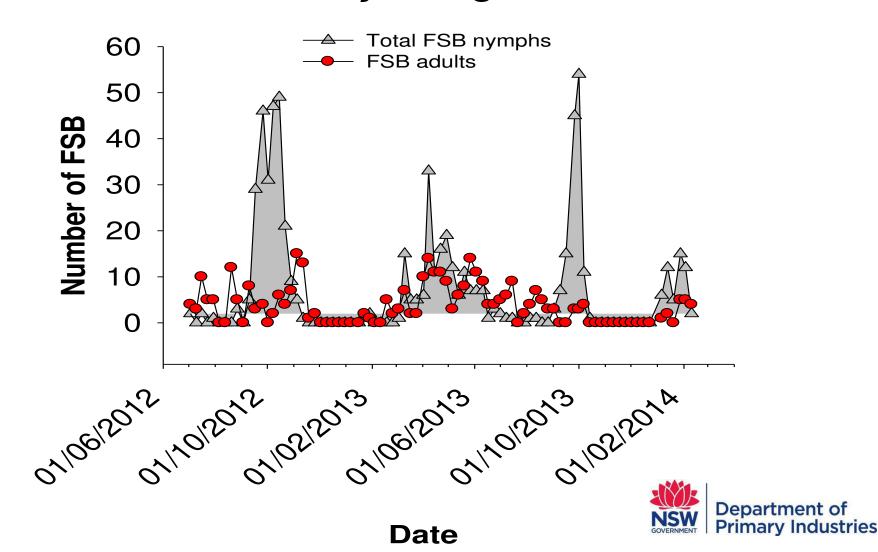
- Alstonville and Woodgate:
- Product 2 vs. Rotation (2x Lepidex[™] + Bulldock[™])

Monitoring and trap cropping

- Monitoring continued on trap hedges at CTH
 - Arboretum Murraya hedge
 - Highway Murraya hedge
 - Germplasm block
- Monitoring at commercial farms
 - Custard apple farm at Alstonville
 - Avocado farm at Alstonville
- We are getting good indications of peaks when FSB are active on hedges and management is needed



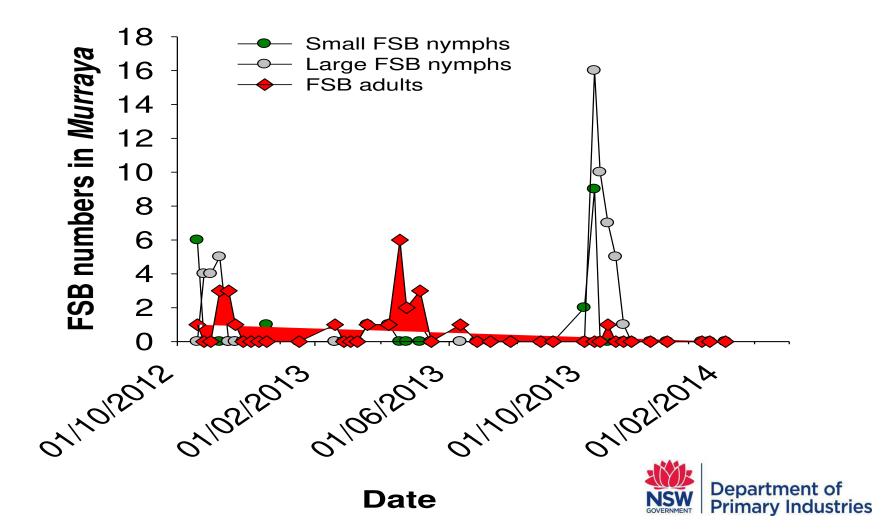
Monitoring and trap cropping (cont.) FSB monitoring in Germplasm block FSB in Macadamia ternifolia 70 FSB in other macadamia 60 Numbers of FSB 50 40 30 20 10 0 105120111120110512012120120131201312013 Date Department of


Primary Industries

Monitoring and trap cropping (cont.)

Monitoring *Murraya* hedge near highway at CTH

Monitoring and trap cropping (cont.) Monitoring Arboretum Murraya hedge at CTH



Monitoring and trap cropping (cont.)

	Longans	Murraya panniculata			Custard apples
	FSB adult	FSB males	FSB females	FSB nymphs	FSB adults
Jan-13	1	0	0	0	4
Feb-13	4	1	1	0	11
Mar-13	1	0	1	3	0
Apr-13	0	0	1	4	0
May-13	0	0	0	0	0
Jun-13	0	0	0	0	0
Jul-13	0	0	0	0	0
Aug-13	0	0	2	0	0
Sep-13	0	0	0	0	0
Oct-13	0	0	0	0	0
Nov-13	0	0	0	0	0
Dec-13	0	0	0	0	0
Jan-14	0	1	0	1	1
Feb-14	1	1	2	1	2

Monitoring and trap cropping (cont.)

FSB numbers in *Murraya* hedge at Alstonville avocado farm

Department of Agriculture, Fisheries and Forestry

FSB Pheromone Trapping Component for HAL Project MT 10049 Feb 2014

Ian Newton Donna Macleod Karel Lindsay Rob Bauer Khrimian Ashot Harry Fay

Great state. Great opportunity.

Fruit Spotting Bug Pheromone Traps

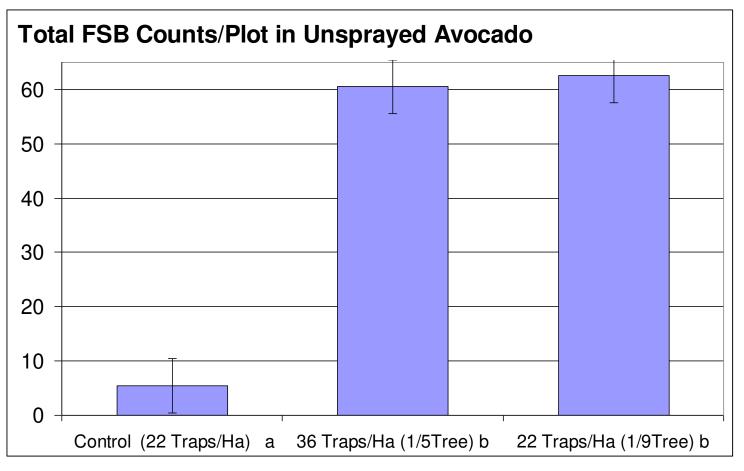
Two species (FSB & BSB) are key pests for avocado, macadamia, custard apple, papaya, lychee, passionfruit, mango & other crops...

There are effective few chemical options and those that can be used, are broad-spectrum (no IPM)

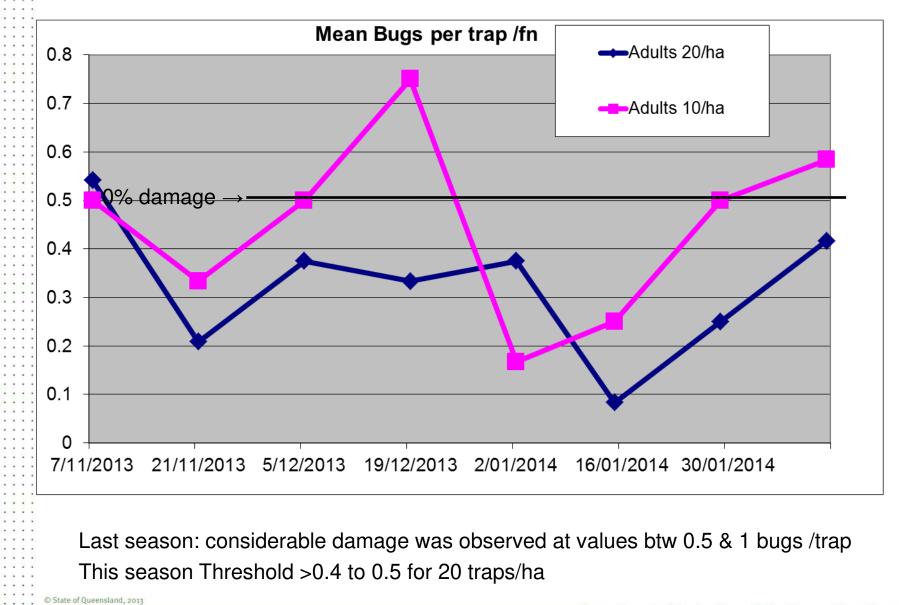
Need for monitoring tools and economic thresholds

A pheromone trap, may allow less reliance on broad scale calendar spraying (broad spectrum)

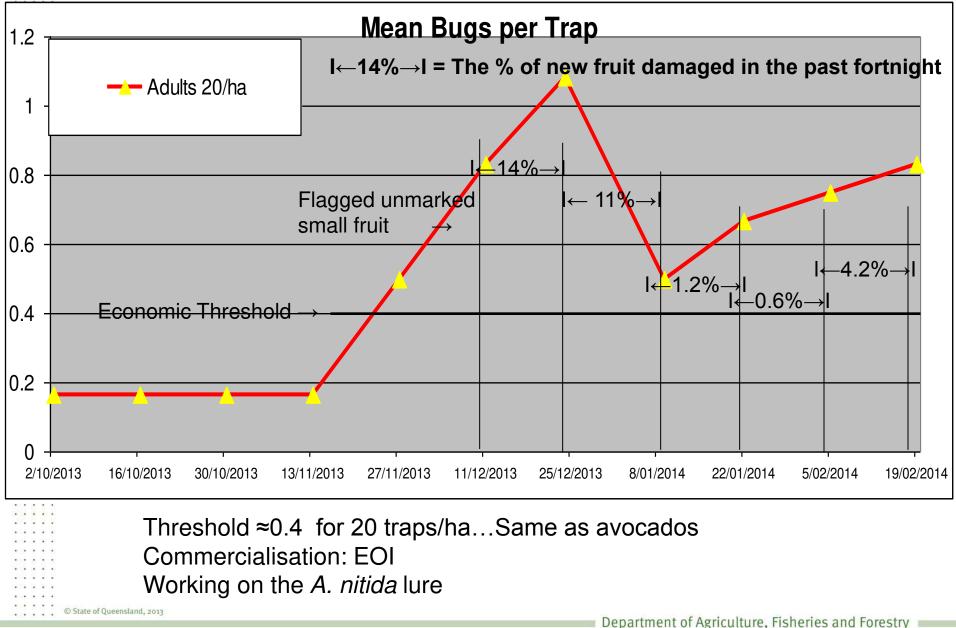
Possibly targeting "hotspots"


A Brief History

- Some Components Identified 20+ yrs ago (USDA/ QDPI Aldrich/Waite *et al* 1993)
- 2009 Harry Fay / USDA identified the last BSB *A. lutescens* component (ACIAR Funded).
- HAL 10049
- A. lutescens lure optimized:
 - 4 chemical components down to 2
 - · Chirality optimized
 - Dose/rate optimized
 - Lure lasts 4-6 weeks in field
 - Catches adult ♂,♀ & nymphs


2012-13: Avocado & Custard Apple

© State of Queensland, 2013


- No difference in total bugs (per Ha) btw trap densities
- i.e. 22 traps/Ha caught just as many bugs as 36 traps/Ha

2014 Adults bugs Avocado Economic Threshold

Department of Agriculture, Fisheries and Forestry

Custard Apple Thresholds-Bugs/Trap

Biological control

- Main releases of Anastatus sp. stopped
- Small one off releases of Anastatus sp., Gryon sp. and Centrodora darwini on 2 commercial farms (Alstonville, Palmwoods) – so far no recovery of parasitoids
- Options Honours project are being investigated
- Options for importing *Trichopoda* pennipes

Area Wide Management

Establish a network of pest monitoring sites

- Rationale:
 - There is a need to establish a network of pest monitoring sites
 - These will include elements of the IPM system such as trap crops, crop monitoring and broader landscape monitoring.
- Response:
 - A small pilot Area Wide Management program will be established for the 2014/15 season in the Rous/Alstonville district.
 - At least three farms, including two case study sites
 - Fortnightly monitoring data on damage levels and bug numbers will be entered onto the PestWeb website.
 - FSB damage data and FSB numbers will be collected by NSW DPI and 2 consultants.
 - The data will be collated, including details on spray applications
 - The usefulness of the information entered into PestWeb data will be assessed by consultants and growers at the midpoint and end of season.
 - Small pilot in Mareeba using the A.lutescens lure will also be considered

Industry adoption

Continue extension activities related to spray application

Rationale:

 There is evidence that inefficient spray coverage using existing chemistry is responsible for poor FSB control outcomes.

Response:

- A series of pre-season spray application workshops will be conducted in mid 2014 and 2015.
 - Regions include the NSW Mid North Coast, Northern Rivers Glasshouse Mountains, Bundaberg and Mareeba and include growers.
 - Production of a spray application video as part of the MacSmart series, ready for release in June 2014.

Industry adoption (cont.) Development of a FSB management manual

Rationale:

 Concise extension material needs to be developed for the core project outcomes. It is recommended that FSB management guidelines be developed.

Response:

- Collation of information to document new knowledge of FSB and as a guide for management of the pest based on sustainable pest management practices
- The FSB management guide will be published in electronic form and adapted for each industry. Hard copies of the publication will also be produced subject to availability of funds.
 - A YouTube video will be developed to support the manual.

Monolepta australis – redshouldered leaf beetle

Photos by DAFFQ

Description:

- The beetles are 6 mm long and yellow, with a dark red (purple) band across the shoulders and two purple spots on the ends of the wing covers.
- Distribution:
 - Throughout northern Australia and particularly in canegrowing coastal regions
- Host range:
 - The host range is large and includes avocado, carambolas, cotton, corn, eucalyptus spp., grasses, legumes, longans, lychee, macadamia, mango, strawberry, and numerous ornamentals.

- Life cycle:
 - Eggs are laid in the soil surface, mainly in pastures and sugarcane.
 - The larvae feed on grass roots and pupate in the soil.
 - The life cycle takes about two months during summer and there are three to four generations annually.
 - Adults usually emerge from the soil after heavy rains following a dry spell.

Department of Primary Industries

- Monitoring and treatment threshold:
 - Check crops after heavy rainfall. *Monolepta* are readily assessed visually or with a beat sheet;
 - Adults are extremely flighty and numbers are difficult to accurately count on a beat sheet.
 - Estimate the number of groups of 5 or 10 beetles on the sheet to get a 'ball park' population figure.
 - Populations greater than 20 per square metre will most likely cause significant damage.
 - Adults will also go to a light trap 650nm mercury vapour light
 - They tend to go back to the same trees

- Chemical control:
 - Monolepta are readily controlled with pesticides
 - Chlorpyrifos
 - Carbaryl
 - Diazinon
 - Trichlorfon
 - Acephate
 - Methidathion
 - Spot spraying of swarms in infested blocks or windbreak trees may be all that is required

Cultural control:

Plant legume crops away from susceptible larval hosts if possible.

